
Autonomous Driving Simulation

Due date: Dec 7th, 2017
Group member: Zezhou Sun, Siqi Zhang

Project Overview
Developing a robust autonomous driving system for automobile is
always a popular topic in the field of computer vision and artificial
intelligence. In this project, our team will take on the task of
creating an autonomous driving system for a car racing simulation
game with the help of feature extraction algorithms as well as the
deep learning models.
Figure at right shows one frame sample of the game.

 Figure 1. Game UI
Problem Definitions

● Develop an agent that can accept only game image(s) and current score as input and should return
the actions (keypress: UP, DOWN, LEFT, RIGHT, N) to take under current condition.

● Goal: Gain score as high as possible. Score can also reflect game completion. To get high score,
agent must learn to finish the game as much as possible and avoid crashing. Agent should reach the
destination as fast as possible, and time limitation for this is 70 seconds.

Problem Analysis
1. Agent can only accept image frames captured from the game and current score, no other

information can be used to make decision
2. To get higher score, according to the instruction of the game, we need to make sure car stay on road

as much as possible and avoid crashing with any obstacles that could exist on road.
○ To avoid crashing, agent need to find out if there exist obstacles before the car, and make

decision to avoid hit with it.
○ To keep the car in road, agent should have the ability to find out where the road is, and make

decisions to keep car on road.
3. In original DQN for ATARI, they use the difference between two frames (motion energy) to track the

object. But in this game, there are more environment noise (environment lighting changes, fog on
road, background changes) in this game. Unlike those 2D ATARI game, the perspective view in this
game make motion energy no longer enough for DQN to learn features on images. So
pre-processing and feature extraction is very important in this condition.
It is necessary to preprocess the images before feeding them into the model due to several of
noises. Figure 2 shows that the brightness of the road can vary because of the illumination from the
headlights and streetlights. And Figure 3 is the case that the brightness can also be affected by
random fog on the road surface.

1

Figure 2. Multiple illumination sources Figure 3. Fog

Besides the brightness invariance, the background could be problematic. Figure 4 demonstrates
noise brought by background. It will be helpful for DQN model training If we can subtract the
background because it will reduce number of states for analysis. But the perspective view is always
changing, which makes it inappropriate to use a certain line to cut image to get road from frame
image. Figure 5 and 6 shows the case where the horizontal lines of road are quite different on every
frame. So we need a well designed algorithm to cut road out of frame.

 Figure 4. Background noise Figure 5. Driving uphill Figure 6. Driving downhill

System Architecture
There are two major parts in our system: Universe[1] Environment and Agent Training Model.

● Universe[1] Environment: Universe will use Docker container which can be ran on remote system to
create an simulation environment for Dusk Drive[2]. Our program will run as a client to communicate
with this remote component via network to get game frames and score, and these frames will also
sent to screen for display and human observation purpose. Figure 7 shows a sample of the display
result. Once our agent make decision about what actions to take, client component will send actions
to remote component so actions can take effect in the game. With this virtual environment, we can
easily access the display stream of the game being play within the environment. On the other hand,
we can also interact with the Universe environment
by defining the input actions from keyboards and
mouse.

● Agent Training Model: Model receive observations
(Game frames) and rewards (score). Model first
apply some pre-processing on observations, then
record these features as next_state. Then push them
to Neural Network for analysis. Neural network will
output score for each action. Then we can based on
some rules (e.t. max score) to take actions. Also
model need to record all events happened, so they
can be used to train DQN.

 Figure 7. Universe environment

2

Then we initialize the parameters for learning model and start the iterative process. The learning process
can be described by the following pseudo code and diagram.

Environment and variable Initialization

While episode_n < max_episode

state = None

Next_state = None

Feed rewards and observations to model

Model process next_state

Record event (state, next_state, reward)

state=next_state

Forward state in neural network

Agent take action(s) based on NN output

Environment receives the action(s)

Model update DQN based on events

End of while

Save learning model

 Diagram 1. Component Diagram

Algorithms Details

1. Process raw pixels
a. Road segmentation.

After analysis of image pixels, we found the road pixels’ rgb follows regression .t, ,]v = [t t T
Thus we can calculate distance from every pixel to this regression line, and set a threshold, if
distance smaller than threshold, then this pixel belongs to road. The formula to calculate this
distance is:

 d = |(x −x)|1 0

|(x−x)×(x−x)|0 1

Where is the pixel’s rgb coordinate. And are two points on regression line. In thex , xx0 1
implementation of this algorithm, we use for simplification. And0, 0, 0) and x 1, 1, 1)x0 = (1 = (
symbol represent cross product of two vector.×
And we set threshold as . For pixel with , we say pixel belongs to road.51 = 5d < 1
Then apply dilation and erosion on output binary image. Here is an example of road
segmentation result.

3

Figure 8. Pixel Regression Line Figure 9. Road Segmentation

b. Feature representations
Furthermore, we tried several feature representations for the processed image and we will
have a combination of them as part of the input for Neural Networks. Figure on left shows the
result of applying adaptive thresholding with morphology. Middle Figure shows the result of
using Canny edge detection. Right Figure shows the result of Scale-invariant Feature
Transform(SIFT).

 Figure 10. Thresholding + morphology Figure 11. Canny Figure 12. SIFT
c. Other tricks.

i. Image concatenate and Resize.
Only current frame is not enough for DQN to make judgement what current direction
and speed is, so we need to send neural network more history frames. We
concatenate rgb channels with 4 history canny edge detection results and 1 road
segmentation through axis 2, so we finally get output in format
Height*Width*Channels=512*800*8. And we apply resize on every channel to reduce
output size, then we get final output 64*100*8.

2. Neural Network and DQN
a. Neural Network Analysis and Architecture

i. Input:
 Eventually, we had to give up the adaptive thresholding and SIFT based on the
 following considerations:

● Adaptive thresholding and morphology does not eliminate the noise very well
while Canny edge detection achieves better performance overall.

4

● SIFT captures the feature points very well and those feature points are very
helpful in determining states. Unfortunately SIFT requires heavy
computations, which slows down the training significantly.

After resize and concatenate of image, the final input have shape 64*100*8. In which
8 channels consist of 3 rgb channels, 4 history canny edge detections and 1 road
segmentation.

ii. NN architecture:
We construct our Neural Networks based on the paper published by DeepMind
Technologies and Pytorch tutorial, with some modifications. Table 1 shows the
detailed settings for our Neural Networks.

Table 1. Neural Networks Architecture

Type # of class/filter Class/filter size Stride Activation

Conv-1 16 3 x 3 2 ReLU

Conv-2 32 4 x 4 2 ReLU

Conv-3 64 5 x 5 2 ReLU

FC-1 300 3200 x 300 N/A ReLU

FC-2 # of Actions 300 x #of Actions N/A Linear

iii. Output:
There are totally 8 possible actions to take, but considering long training time and
limited time left for this project, we only take 3 actions (UP, UP+LEFT, UP+RIGHT)
which involve forward moving for training.
Given a state input, network should output scores for each action. Since we are using
3 actions at here, network should output 3 scores. Then we can apply some algorithm
to make decision which action to take based on these scores. In this model, we
actually take max score’s corresponded action as final action to take.

b. DQN update and action selection

i. DQN and NN Update
The deep reinforcement learning uses a Neural Network to approximate function
which take state as input and return score for every actions for decision make. The
value for that action is actually the expected sum of discount rewards that we can get
if we select to take this action under current state. Every time we make a decision on
action to take, we record current state and action we take, also the next-state (we can
get this when next state input into our model) as an event. Then we push this event to
experience pool[10]. Then we randomly select events from experience pool and update
DQN using these events. Based on bellman equation, the target Q value for state s
and action a is

(s, a) max Q(s , a)), where s is next stateQtarget = r + γ a′ ′ ′ ′
Then we update current Q(s, a)

(s, a) (s, a) [Q (s, a) (s, a)]Qnew = Q + α target − Q

5

Then we use current and to define loss function for back(s, a) Q (s, a) Qnew
propagation.
At here we use smooth_l1_loss as loss function, which is defined as following[7][11]:

{ 0.5 * (x_i - y_i)^2, if |x_i - y_i| < 1
loss(x, y) = 1/n \sum {
 { |x_i - y_i| - 0.5, otherwise

ii. Action Selection
To explore the solution space as much as possible, we use epsilon-greedy[10]
algorithm for action selection, that is:
Define a epsilon which is in (0, 1) and will decay with time, take a random number in
(0, 1). If this random number if larger than epsilon, we use the action select by the
network as action we are going to take. Otherwise we randomly take an action. After
a long period of training, the epsilon will be very small and most action will be
selected by DQN.

c. DQN rewards design

To reach our goal, we need to define a good reward which can reflect the quality of current
state. After many test, we combined following 3 partial rewards as final reward. And the final
rewards is defined as

R = Ras + Rcd + Ror
i. Average speed.

The average of score changes during this observation. This can reflect if the car is
driving in a good condition. We want the program to drive the car as fast and as
smooth as possible, so this is very important. But we just find the score distributed on
a large range, which brings difficulty for us to use this directly. So we use log function
to smooth it. The reward of this part is defined as following:

og(mean(Scores)) Ras = l + 1
ii. Crash detection

Because we can only get score changes during a short time. And we can use this to
do crash detection. Because score changes represent distance the car moved
between last frame and current frame. So according to the physical definition /tv = s
Score changes actually reflect average speed during this short period. And if we
calculate derivative of v to t, we get which is the acceleration of the car.v/∂ta = ∂
If the car move in constant velocity or accelerate, a should greater or equal to 0.
Otherwise a should be smaller than 0. If a is smaller than 0, that means there must be
something happened caused speed decrease. At here we make a simple assumption
that crash is the main reason that cause the decrease of car speed. So to calculate
the acceleration of this, we only need to calculate changes of score changes, notate it
as ac. Then we define reward for crash detection as following:

− , when ac − 0 , where p Rcd = p < 5 > 0
 , when ac =− 0 = 0 > 5

iii. On road detection

This reward is actually based on a manually defined rule: Car should drive on road.
When car run off the road, we will give the model a little penalty. But to detect if the

6

car has run off the road is another big problem. Because we can only get images and
scores from environment, we have no idea what happened inside the program. So we
can only use what we have to design such rewards. Just like we mentioned above,
we use the same method as road segmentation to do this. First we cut a small area in
front of the car for detection. Then apply road pixel judgement on it. For this block, if
there are more than 20 percent pixels don’t belong to road, we can say car has run off
the road. Here is the confusion matrix for this method. A whole episode ran for test.

 Table 2. Confusion Matrix

 Label: Car off road Label: Car on road

Algorithm: Car off road 103 19

Algorithm: Car on road 4 125

False positive rate of this algorithm p 9/(19 25) 3% f = 1 + 1 = 1
True positive rate of this algorithm p /(4 03) .7% t = 4 + 1 = 3
Accuracy of this ccuracy 103 25)/(103 25 9) 0.8% a = (+ 1 + 1 + 4 + 1 = 9
Because we only want to punish the model when car run off road and also run at a
low speed, so true positive rate is more important to us. Then this algorithm can
actually works well. And we define the reward for crash detection as following:

, when over 20% of that area not on road, p Ror = − p > 0
 0, otherwise =

Experiment and Future Work
1. Experiments Result

We don’t have much time for training, and current training result showed below. Left figure is the
result that test result changes with time. Test is totally depend on DQN action selection, no random
action selection will take place. We can see the longer we train, the less bad test scores we get.
Right figure shows total score changes with training episode. We can see a increasing trend of it.

 Figure 13. Test result changes Figure 14. Total Reward changes

We post a video on youtube which shows our agent’s training result. https://youtu.be/qcY6T6Hn0jE.
2. Interesting facts

a. Reinforcement Learning in this game will use certain abnormal rules in this game to increase
its performance. For example, in this game, agent learned to hit lamp posts to trigger a reset
mechanism which will reset the car in the middle of the road but don’t decrease the car’s
speed.

7

https://youtu.be/qcY6T6Hn0jE

b. When there are lots of cars on the road, agent will choose to run into grass near the road to
avoid hitting with any of them.

3. Discussion
We developed this model based on [9] and [11]. We tried to apply their model on this game, but it
don’t work. Actually the longer we train it, the worse it performance. So we implement current
method. As a result, we are able to get an acceptable result: after 3800 episodes of training, the
agent is able to gain a score over 450K and a race completion above 85%. At current stage, the
agent is able to dodge some cars when driving along straight lane. It is also able to steer when it’s
need. However there are certain critical cases that it has not yet learned the optimal action:

● It doesn’t know how to respond to sharp turning.
● In the last half of the race, there is a downhill followed by a right-turning. The agent will run

out of the lane almost every time because the high velocity caused by the gravitational force
will gain a high reward automatically therefore encourage the agent to keep moving forward
instead of turning. Also, the inertia caused by the physics makes turning even harder.

● Training of the model is super slow, will take days for training.
● The way we define exploration method is too simple which result in that our model trained

well on first half of the race, but not much trained on rest.
● The way we input history frames is very simple. We just pushed history frames to CNN

directly without any processing. Actually we should use a LSTM network after CNN to deal
with this time sequence data.

4. Future Work
Although our current agent is not able to gain 100% completion for the race, we are hopeful that it
will achieve the goal. There are a few things we would like to try in the near future:

● Replace the Deep Q-learning model with a Double Deep Q-learning model or Dueling
network architecture.

● Use different image preprocessing methods. For example, a more precise road segmentation
method will be helpful for agent to learning to avoid hitting obstacles beside the road.

● Define a better reward for agent to let it learn to finish the game as we want.
● Use a new Neural Networks architecture that requires less computations so that each

learning iteration can be done faster(This is also related to the choice of image preprocessing
methods).

● Because this is actually very complex for DQN training, so it took so much time on exploring
environment on first half of the race. When it can finally reach the end of the lane, epsilon
almost decay to 0, which means there is not much random exploration for the agent to
explore rest racing lane. Maybe we need to define a smarter way to explore whole space.

Conclusion
Throughout the project, we realized appropriate pre-processing method play an important role in image
processing, and also learned how to use some of the methods we learned in this semester to facilitate the
machine learning. We have experienced how powerful reinforcement learning is and how much it is able to
do. The most amazing thing we have learned is that reinforcement learning can work within an environment
without having any presumptions if the state and reward is well designed(i.e.Our model can work with any
car racing game, though performance will vary): it gets in the environment without any knowledge of it and
learns about it by trying -- This is exactly how we human learn things.

References
8

1. Universe Library, OpenAI <https://github.com/openai/universe>
2. Dusk Drive, LongAnimals, <http://www.kongregate.com/games/longanimals/dusk-drive>.
3. Fredman Lex, M.I.T. “6.S094 Introduction to Deep Learning and Self-Driving Cars”.

<http://selfdrivingcars.mit.edu/>
4. Li Fei-fei, Johnson Justin, Yeung Serenda, Stanford University, “CS231n: Convolutional Neural

Networks for Visual Recognition”. <http://cs231n.stanford.edu/>
5. Robert Chuchro, Deepak Gupta. Stanford University, CS231n project report “Game Playing with

Deep Q-Learning using OpenAI Gym” <http://cs231n.stanford.edu/reports/2017/pdfs/616.pdf>
Accessed on Nov 5th 2017

6. DeepMind Technologies, NIPS Deep Learning Workshop,“Playing Atari with Deep Reinforcement
Learning”, published in 2013

 <https://arxiv.org/pdf/1312.5602v1.pdf> Accessed on Nov 5th 2017
7. Pytorch, “Reinforcement Learning(DQN) Tutorial”

<http://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html>
8. Useful link for using Universe library:

https://medium.com/@hoidnflo/off-policy-q-learning-in-openai-universe-part-1-setting-up-openais-ba
seline-dqn-6ae00f08a049

9. Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540
(2015): 529-533.

10. Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint
arXiv:1312.5602 (2013).

11. Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on computer vision.
2015.

9

https://github.com/openai/universe
http://www.kongregate.com/games/longanimals/dusk-drive
http://selfdrivingcars.mit.edu/
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/reports/2017/pdfs/616.pdf
https://arxiv.org/pdf/1312.5602v1.pdf
http://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://medium.com/@hoidnflo/off-policy-q-learning-in-openai-universe-part-1-setting-up-openais-baseline-dqn-6ae00f08a049
https://medium.com/@hoidnflo/off-policy-q-learning-in-openai-universe-part-1-setting-up-openais-baseline-dqn-6ae00f08a049

